Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichloridobis(1,3-phenylpropane-1,3dionato- $\kappa^2 O, O'$)tin(IV) toluene hemisolvate

Chun Keng Thy, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 13 July 2010; accepted 14 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; disorder in solvent or counterion; R factor = 0.018; wR factor = 0.049; data-to-parameter ratio = 16.9.

The two Sn-O-C-C-C-O chelate rings in the title compound, $[Sn(C_{15}H_{11}O_2)_2Cl_2]\cdot 0.5C_7H_8$, adopt envelope conformations, with the Sn atom deviating from the leastsquares plane passing through the C and O atoms by 0.626 (1) Å in one ring and by 0.690 (1) Å for the other. The two planes are aligned at an angle of 59.6 (1)°. The Cl atoms occupy *cis* positions in the octahedral $SnCl_2O_4$ coordination environment. The solvent molecule is disordered about a center of inversion.

Related literature

For the crystal structure of anhydrous dichlorodibis(1,3-phenylpropane-1,3-dionato)tin(IV), see: Searle *et al.* (1989).

Experimental

Crystal data

 $[Sn(C_{15}H_{11}O_2)_2Cl_2] \cdot 0.5C_7H_8$ $M_r = 682.13$ Monoclinic, $P2_1/n$ a = 8.0024 (1) Å b = 21.5554 (2) Å c = 16.6838 (2) Å $\beta = 97.2740$ (5)°

Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.663, T_{max} = 0.730$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.049$ S = 1.026534 reflections 386 parameters $V = 2854.71 \text{ (6) } \text{Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.12 \text{ mm}^{-1}$ T = 100 K $0.40 \times 0.35 \times 0.30 \text{ mm}$

23143 measured reflections 6534 independent reflections 6269 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.014$

43 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.51$ e Å⁻³ $\Delta \rho_{min} = -0.48$ e Å⁻³

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5299).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Searle, D., Smith, P. J., Bell, N. A., March, L. A., Nowell, I. W. & Donaldson, J. D. (1989). *Inorg. Chim. Acta*, 162, 143–149.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, m992 [doi:10.1107/S1600536810028084]

Dichloridobis(1,3-phenylpropane-1,3-dionato- $\kappa^2 O, O'$)tin(IV) toluene hemisolvate

C. K. Thy, K. M. Lo and S. W. Ng

Comment

The toluene solvate (Scheme I) was obtained from the reaction of dibenzyltin dichloride and dibenzoylmethane in ethanol. Since no toluene was used in the synthesis, the toluene in the crystal structure would have resulted from the cleavage of the tin–carbon_{benzyl} bond by the dibenzoylmethane molecule, which in the deprotonated form chelates to tin (Fig. 1). The six-membered Sn–O–C–C–C–O chelate rings adopt an envelope-shaped conformation, with the tin atom lying off the least-squares plane defined by the carbon/oxygen atoms. Bond dimensions are similar to those reported for the anhydrous compound (Searle *et al.*, 1989).

Experimental

Dibenzyltin dichloride (1 mmol) and dibenzoylmethane (1 mmol) were refluxed in ethanol for 1 h. The toluene solvate was obtained as crystals when the solvent was allowed to evaporate.

Refinement

The toluene molecule is disordered over a center-of-inversion. The aromatic ring was refined as a hexagon of 1.39 Å sides, and the C_{methyl} - C_{phenyl} distance was refined with a distance restraint of 1.54±0.01 Å; the displacement parameters of the seven carbon atoms were restrained to be nearly isotropic.

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.98 Å) and included in the refinement in the riding model approximation, with U(H) set to $1.2-1.5U_{eq}(C)$.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of $SnCl_2(C_{15}H_{11}O_2)^{\circ}0.5C_7H_8$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Dichloridobis(1,3-phenylpropane-1,3-dionato- $\kappa^2 O, O'$)tin(IV) toluene hemisolvate

F(000) = 1372

 $\theta = 2.6 - 28.3^{\circ}$

 $\mu = 1.12 \text{ mm}^{-1}$

Block, colorless $0.40 \times 0.35 \times 0.30 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.587 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 9775 reflections

Crystal data

 $[Sn(C_{15}H_{11}O_2)_2Cl_2] \cdot 0.5C_7H_8$ $M_r = 682.13$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.0024 (1) Å b = 21.5554 (2) Å c = 16.6838 (2) Å $\beta = 97.2740$ (5)° V = 2854.71 (6) Å³ Z = 4

Data collection

6534 independent reflections
6269 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.014$
$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
$h = -10 \rightarrow 10$
$k = -28 \rightarrow 27$
$l = -21 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.018$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.049$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0264P)^{2} + 1.8695P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6534 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
386 parameters	$\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3}$
43 restraints	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Sn1	0.423028 (11)	0.234239 (4)	0.547401 (5)	0.01263 (4)	
Cl1	0.20470 (4)	0.170342 (15)	0.48111 (2)	0.01801 (7)	

Cl2	0.23181 (4)	0.308712 (15)	0.58666 (2)	0.01822 (7)
01	0.62198 (12)	0.28585 (4)	0.60498 (6)	0.01569 (18)
O2	0.43258 (12)	0.18534 (4)	0.65338 (6)	0.01634 (19)
O3	0.59905 (12)	0.17245 (4)	0.51420 (6)	0.01660 (19)
O4	0.45921 (13)	0.28244 (4)	0.44524 (6)	0.01604 (19)
C1	0.74806 (17)	0.35237 (6)	0.70667 (8)	0.0146 (2)
C2	0.87260 (18)	0.37017 (7)	0.65982 (9)	0.0187 (3)
H2	0.8871	0.3476	0.6123	0.022*
C3	0.97545 (18)	0.42080 (7)	0.68234 (9)	0.0219 (3)
H3	1.0615	0.4321	0.6508	0.026*
C4	0.95274 (18)	0.45488 (7)	0.75081 (9)	0.0209 (3)
H4	1.0223	0.4898	0.7658	0.025*
C5	0.82797 (19)	0.43778 (7)	0.79729 (9)	0.0199 (3)
Н5	0.8114	0.4613	0.8438	0.024*
C6	0.72730 (18)	0.38632 (6)	0.77598 (8)	0.0176 (3)
Н6	0.6440	0.3742	0.8087	0.021*
C7	0.63927 (16)	0.29790 (6)	0.68135 (8)	0.0142 (2)
C8	0.56859 (18)	0.26349 (6)	0.73948 (8)	0.0160 (3)
H8	0.5858	0.2782	0.7936	0.019*
С9	0.47456 (16)	0.20909 (6)	0.72458 (8)	0.0142 (2)
C10	0.41507 (17)	0.17367 (6)	0.79168 (8)	0.0153 (2)
C11	0.42603 (19)	0.19764 (7)	0.87008 (9)	0.0208 (3)
H11	0.4811	0.2361	0.8825	0.025*
C12	0.3567 (2)	0.16530 (8)	0.92983 (9)	0.0257 (3)
H12	0.3618	0.1823	0.9826	0.031*
C13	0.2798 (2)	0.10820 (8)	0.91288 (10)	0.0259 (3)
H13	0.2328	0.0862	0.9540	0.031*
C14	0.27184 (19)	0.08334 (7)	0.83542 (10)	0.0230 (3)
H14	0.2213	0.0439	0.8239	0.028*
C15	0.33758 (18)	0.11603 (6)	0.77509 (9)	0.0183 (3)
H15	0 3300	0.0992	0 7221	0.022*
C16	0.62450 (16)	0.16168 (6)	0.44027 (8)	0.0146 (2)
C17	0.70704 (16)	0.10122 (6)	0.42799 (8)	0.0153(3)
C18	0.67625 (18)	0.05155 (6)	0.47798 (9)	0.0182(3)
H18	0.6084	0.0576	0 5201	0.022*
C19	0 74452 (19)	-0.00663(7)	0.46630 (9)	0.022
H19	0.7217	-0.0404	0 4998	0.027*
C20	0.84583(19)	-0.01515(7)	0 40570 (10)	0.0243(3)
H20	0.8925	-0.0549	0 3978	0.029*
C21	0.87930 (19)	0.03398(7)	0.35662 (10)	0.023
H21	0.9500	0.0280	0.3156	0.029*
C22	0 80949 (18)	0.09223 (7)	0.36718 (9)	0.029
H22	0.8316	0.1257	0.3331	0.024*
C23	0.57756 (17)	0.20051 (6)	0.37482(8)	0.021
H23	0.5989	0.1865	0.3231	0.019*
C24	0 50103 (17)	0.25886 (6)	0.37916 (8)	0.0140(2)
C25	0 45972 (16)	0.29810 (6)	0 30672 (8)	0.0145(2)
C26	0 36654 (18)	0.35218 (6)	0 31416 (9)	0.0187(3)
H26	0 3362	0.3637	0.3653	0.022*
	0.0002	0.0007	0.0000	

C27	0.31824 (19)	0.38901 (7)	0.24702 (9)	0.0221 (3)	
H27	0.2554	0.4258	0.2523	0.027*	
C28	0.36168 (19)	0.37208 (7)	0.17210 (9)	0.0222 (3)	
H28	0.3264	0.3969	0.1260	0.027*	
C29	0.45660 (19)	0.31897 (7)	0.16435 (9)	0.0211 (3)	
H29	0.4874	0.3078	0.1131	0.025*	
C30	0.50646 (17)	0.28211 (7)	0.23134 (8)	0.0171 (3)	
H30	0.5723	0.2460	0.2260	0.020*	
C31	0.3563 (8)	0.4768 (3)	0.4741 (4)	0.0210 (10)	0.50
C32	0.4464 (8)	0.4664 (3)	0.5497 (4)	0.0265 (13)	0.50
H32	0.4019	0.4398	0.5872	0.032*	0.50
C33	0.6015 (8)	0.4950 (3)	0.5706 (4)	0.0285 (14)	0.50
H33	0.6631	0.4879	0.6223	0.034*	0.50
C34	0.6666 (8)	0.5339 (3)	0.5158 (5)	0.0315 (15)	0.50
H34	0.7726	0.5535	0.5300	0.038*	0.50
C35	0.5765 (9)	0.5443 (4)	0.4401 (5)	0.0266 (12)	0.50
H35	0.6210	0.5709	0.4027	0.032*	0.50
C36	0.4214 (9)	0.5158 (3)	0.4193 (4)	0.0260 (12)	0.50
H36	0.3599	0.5229	0.3676	0.031*	0.50
C37	0.1816 (4)	0.44999 (16)	0.4561 (2)	0.0292 (7)	0.50
H37A	0.1831	0.4064	0.4730	0.044*	0.50
H37B	0.1441	0.4527	0.3980	0.044*	0.50
H37C	0.1041	0.4734	0.4857	0.044*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01623 (5)	0.01190 (5)	0.00992 (5)	0.00085 (3)	0.00233 (3)	-0.00018 (3)
Cl1	0.02183 (16)	0.01610 (15)	0.01564 (15)	-0.00272 (11)	0.00060 (12)	-0.00137 (11)
Cl2	0.01985 (15)	0.01574 (15)	0.01997 (16)	0.00295 (11)	0.00608 (12)	-0.00062 (12)
01	0.0185 (5)	0.0165 (5)	0.0126 (4)	-0.0016 (4)	0.0038 (4)	-0.0010 (4)
O2	0.0221 (5)	0.0148 (4)	0.0119 (4)	-0.0004 (4)	0.0012 (4)	-0.0007 (3)
O3	0.0206 (5)	0.0164 (5)	0.0128 (4)	0.0043 (4)	0.0021 (4)	-0.0008 (4)
O4	0.0231 (5)	0.0134 (4)	0.0122 (4)	0.0012 (4)	0.0048 (4)	0.0003 (3)
C1	0.0153 (6)	0.0138 (6)	0.0143 (6)	0.0014 (5)	0.0007 (5)	0.0015 (5)
C2	0.0188 (6)	0.0195 (7)	0.0181 (7)	0.0000 (5)	0.0040 (5)	-0.0013 (5)
C3	0.0184 (7)	0.0219 (7)	0.0260 (8)	-0.0028 (5)	0.0060 (6)	0.0015 (6)
C4	0.0186 (7)	0.0165 (6)	0.0264 (7)	-0.0016 (5)	-0.0020 (6)	0.0007 (5)
C5	0.0249 (7)	0.0169 (6)	0.0174 (7)	0.0007 (5)	0.0005 (5)	-0.0023 (5)
C6	0.0199 (6)	0.0171 (6)	0.0160 (6)	0.0005 (5)	0.0032 (5)	0.0010 (5)
C7	0.0140 (6)	0.0141 (6)	0.0144 (6)	0.0028 (5)	0.0013 (5)	-0.0007 (5)
C8	0.0183 (6)	0.0169 (7)	0.0126 (6)	0.0000 (5)	0.0015 (5)	-0.0005 (5)
C9	0.0148 (6)	0.0145 (6)	0.0135 (6)	0.0032 (5)	0.0021 (5)	0.0012 (5)
C10	0.0150 (6)	0.0165 (6)	0.0143 (6)	0.0016 (5)	0.0012 (5)	0.0032 (5)
C11	0.0232 (7)	0.0230 (7)	0.0161 (7)	-0.0050 (5)	0.0017 (5)	0.0014 (5)
C12	0.0297 (8)	0.0335 (8)	0.0140 (7)	-0.0048 (6)	0.0035 (6)	0.0032 (6)
C13	0.0277 (8)	0.0292 (8)	0.0217 (7)	-0.0021 (6)	0.0071 (6)	0.0106 (6)
C14	0.0239 (7)	0.0186 (7)	0.0271 (8)	-0.0015 (5)	0.0060 (6)	0.0057 (6)

C15	0.0207 (7)	0.0156 (6)	0.0191 (7)	0.0020 (5)	0.0040 (5)	0.0011 (5)
C16	0.0137 (6)	0.0141 (6)	0.0162 (6)	-0.0021 (5)	0.0027 (5)	-0.0021 (5)
C17	0.0142 (6)	0.0140 (6)	0.0171 (6)	0.0004 (5)	-0.0008 (5)	-0.0029 (5)
C18	0.0196 (6)	0.0168 (6)	0.0178 (7)	0.0010 (5)	0.0006 (5)	-0.0017 (5)
C19	0.0254 (7)	0.0153 (6)	0.0254 (7)	0.0014 (5)	-0.0018 (6)	-0.0002 (5)
C20	0.0206 (7)	0.0178 (7)	0.0330 (8)	0.0049 (5)	-0.0025 (6)	-0.0080 (6)
C21	0.0189 (7)	0.0249 (7)	0.0304 (8)	0.0029 (6)	0.0063 (6)	-0.0080 (6)
C22	0.0186 (7)	0.0190 (7)	0.0236 (7)	-0.0003 (5)	0.0049 (5)	-0.0028 (5)
C23	0.0196 (6)	0.0151 (6)	0.0133 (6)	-0.0001 (5)	0.0048 (5)	-0.0017 (5)
C24	0.0151 (6)	0.0138 (6)	0.0132 (6)	-0.0026 (5)	0.0025 (5)	-0.0006 (5)
C25	0.0155 (6)	0.0144 (6)	0.0138 (6)	-0.0032 (5)	0.0023 (5)	0.0002 (5)
C26	0.0218 (7)	0.0178 (7)	0.0168 (6)	0.0003 (5)	0.0036 (5)	0.0009 (5)
C27	0.0229 (7)	0.0185 (7)	0.0245 (7)	0.0020 (5)	0.0015 (6)	0.0044 (6)
C28	0.0217 (7)	0.0248 (7)	0.0188 (7)	-0.0041 (6)	-0.0023 (5)	0.0081 (6)
C29	0.0231 (7)	0.0268 (7)	0.0134 (6)	-0.0057 (6)	0.0025 (5)	0.0018 (5)
C30	0.0180 (6)	0.0184 (6)	0.0150 (6)	-0.0029 (5)	0.0029 (5)	-0.0001 (5)
C31	0.023 (2)	0.018 (2)	0.024 (2)	0.0032 (17)	0.0075 (19)	0.0015 (16)
C32	0.041 (3)	0.017 (3)	0.025 (2)	0.006 (2)	0.017 (2)	0.0064 (19)
C33	0.034 (3)	0.028 (3)	0.021 (2)	0.011 (2)	-0.003 (2)	-0.004 (2)
C34	0.030 (2)	0.026 (3)	0.042 (3)	-0.0038 (19)	0.016 (2)	-0.010 (2)
C35	0.033 (2)	0.017 (2)	0.032 (3)	-0.0018 (16)	0.012 (2)	0.0031 (19)
C36	0.034 (2)	0.019 (2)	0.028 (2)	0.0038 (18)	0.0139 (19)	0.0056 (17)
C37	0.0278 (16)	0.0270 (16)	0.0324 (17)	-0.0008(12)	0.0020(13)	-0.0004 (13)

Geometric parameters (Å, °)

Sn1—O4	2.0477 (9)	C17—C18	1.3981 (19)
Sn1—O2	2.0515 (10)	C18—C19	1.391 (2)
Sn1—O3	2.0646 (9)	C18—H18	0.9500
Sn1—O1	2.0756 (10)	C19—C20	1.386 (2)
Sn1—Cl2	2.3667 (3)	С19—Н19	0.9500
Sn1—Cl1	2.3840 (3)	C20—C21	1.385 (2)
O1—C7	1.2904 (16)	С20—Н20	0.9500
O2—C9	1.2981 (16)	C21—C22	1.395 (2)
O3—C16	1.2962 (16)	C21—H21	0.9500
O4—C24	1.2957 (16)	С22—Н22	0.9500
C1—C6	1.3961 (19)	C23—C24	1.4049 (18)
C1—C2	1.3959 (19)	С23—Н23	0.9500
C1—C7	1.4906 (18)	C24—C25	1.4779 (18)
C2—C3	1.390 (2)	C25—C26	1.3978 (19)
С2—Н2	0.9500	C25—C30	1.3997 (19)
C3—C4	1.389 (2)	C26—C27	1.387 (2)
С3—Н3	0.9500	С26—Н26	0.9500
C4—C5	1.389 (2)	C27—C28	1.388 (2)
C4—H4	0.9500	С27—Н27	0.9500
C5—C6	1.390 (2)	C28—C29	1.389 (2)
С5—Н5	0.9500	C28—H28	0.9500
С6—Н6	0.9500	C29—C30	1.388 (2)
С7—С8	1.3963 (19)	С29—Н29	0.9500

C8—C9	1.3984 (19)	С30—Н30	0.9500
C8—H8	0.9500	C31—C32	1.3900
C9—C10	1.4826 (18)	C31—C36	1.3900
C10—C11	1.399 (2)	C31—C37	1.507 (6)
C10-C15	1.4005 (19)	C32—C33	1.3900
C11—C12	1.388 (2)	С32—Н32	0.9500
C11—H11	0.9500	C33—C34	1.3900
C12—C13	1.389 (2)	С33—Н33	0.9500
C12—H12	0.9500	C34—C35	1.3900
C13—C14	1.393 (2)	С34—Н34	0.9500
С13—Н13	0.9500	C35—C36	1.3900
C14—C15	1.386 (2)	С35—Н35	0.9500
C14—H14	0.9500	С36—Н36	0.9500
C15—H15	0.9500	С37—Н37А	0.9800
C16—C23	1.3893 (19)	С37—Н37В	0.9800
C16—C17	1.4870 (18)	С37—Н37С	0.9800
C17—C22	1.3962 (19)		
O4—Sn1—O2	169.82 (4)	O3—C16—C23	125.49 (12)
O4—Sn1—O3	86.03 (4)	O3—C16—C17	114.46 (12)
O2—Sn1—O3	87.00 (4)	C23—C16—C17	120.02 (12)
O4—Sn1—O1	86.12 (4)	C22—C17—C18	119.43 (13)
O2—Sn1—O1	86.20 (4)	C22-C17-C16	122.25 (12)
O3—Sn1—O1	87.74 (4)	C18—C17—C16	118.30 (12)
O4—Sn1—Cl2	92.91 (3)	C19—C18—C17	120.31 (13)
O2—Sn1—Cl2	93.72 (3)	C19—C18—H18	119.8
O3—Sn1—Cl2	177.21 (3)	C17—C18—H18	119.8
O1—Sn1—Cl2	89.61 (3)	C20-C19-C18	119.86 (14)
O4—Sn1—Cl1	94.56 (3)	С20—С19—Н19	120.1
O2—Sn1—Cl1	92.76 (3)	C18—C19—H19	120.1
O3—Sn1—Cl1	89.29 (3)	C19—C20—C21	120.31 (14)
O1—Sn1—Cl1	176.90 (3)	С19—С20—Н20	119.8
Cl2—Sn1—Cl1	93.366 (12)	C21—C20—H20	119.8
C7—O1—Sn1	123.02 (8)	C20—C21—C22	120.20 (14)
C9—O2—Sn1	124.27 (8)	C20—C21—H21	119.9
C16—O3—Sn1	124.44 (8)	C22—C21—H21	119.9
C24—O4—Sn1	126.03 (8)	C17—C22—C21	119.88 (14)
C6—C1—C2	119.22 (13)	C17—C22—H22	120.1
C6—C1—C7	121.41 (12)	C21—C22—H22	120.1
C2—C1—C7	119.37 (12)	C16—C23—C24	125.10 (12)
C3—C2—C1	120.31 (13)	С16—С23—Н23	117.4
C3—C2—H2	119.8	C24—C23—H23	117.4
C1—C2—H2	119.8	04—C24—C23	123.80 (12)
C4—C3—C2	120.20 (13)	04	114.60 (11)
C4—C3—H3	119.9	C23—C24—C25	121.60 (12)
U2—U3—H3	119.9	C26—C25—C30	119.42 (13)
$C_5 = C_4 = C_3$	119.78 (13)	$C_{26} = C_{25} = C_{24}$	118.11 (12)
$C_2 = C_4 = H_4$	120.1	$C_{30} - C_{25} - C_{24}$	122.44 (12)
U3-U4-H4	120.1	$C_2/-C_{26}-C_{25}$	120.19 (13)
C4—C5—C6	120.20 (13)	C2/—C26—H26	119.9

С4—С5—Н5	119.9	C25—C26—H26	119.9
С6—С5—Н5	119.9	C28—C27—C26	120.04 (14)
C5—C6—C1	120.27 (13)	С28—С27—Н27	120.0
С5—С6—Н6	119.9	С26—С27—Н27	120.0
С1—С6—Н6	119.9	C27—C28—C29	120.19 (13)
O1—C7—C8	125.22 (12)	C27—C28—H28	119.9
O1—C7—C1	115.09 (12)	С29—С28—Н28	119.9
C8—C7—C1	119.67 (12)	C30—C29—C28	120.11 (14)
С7—С8—С9	125.32 (13)	С30—С29—Н29	119.9
С7—С8—Н8	117.3	С28—С29—Н29	119.9
С9—С8—Н8	117.3	C29—C30—C25	120.02 (13)
02—C9—C8	124.37 (12)	С29—С30—Н30	120.0
O2—C9—C10	114.66 (12)	С25—С30—Н30	120.0
C8—C9—C10	120.97 (12)	C32—C31—C36	120.0
C11-C10-C15	119.09 (13)	C32—C31—C37	118.7 (3)
C11—C10—C9	121.86 (12)	C36—C31—C37	121.1 (3)
C15—C10—C9	118.96 (12)	C33—C32—C31	120.0
C12-C11-C10	120.17 (14)	С33—С32—Н32	120.0
C12—C11—H11	119.9	С31—С32—Н32	120.0
C10-C11-H11	119.9	C32—C33—C34	120.0
C13—C12—C11	120.38 (15)	С32—С33—Н33	120.0
C13—C12—H12	119.8	С34—С33—Н33	120.0
C11—C12—H12	119.8	C35—C34—C33	120.0
C12—C13—C14	119.80 (14)	С35—С34—Н34	120.0
C12—C13—H13	120.1	С33—С34—Н34	120.0
C14—C13—H13	120.1	C36—C35—C34	120.0
C15-C14-C13	120.07 (14)	С36—С35—Н35	120.0
C15—C14—H14	120.0	С34—С35—Н35	120.0
C13-C14-H14	120.0	C35—C36—C31	120.0
C14-C15-C10	120.46 (14)	С35—С36—Н36	120.0
C14—C15—H15	119.8	С31—С36—Н36	120.0
С10—С15—Н15	119.8		
O4—Sn1—O1—C7	153.37 (10)	C11—C12—C13—C14	-0.2 (2)
O2—Sn1—O1—C7	-33.32 (10)	C12-C13-C14-C15	-1.2 (2)
O3—Sn1—O1—C7	-120.46 (10)	C13-C14-C15-C10	1.1 (2)
Cl2—Sn1—O1—C7	60.43 (10)	C11-C10-C15-C14	0.3 (2)
O4—Sn1—O2—C9	74.0 (2)	C9—C10—C15—C14	-176.28 (13)
O3—Sn1—O2—C9	120.85 (10)	Sn1—O3—C16—C23	19.78 (18)
O1—Sn1—O2—C9	32.92 (10)	Sn1—O3—C16—C17	-158.46 (9)
Cl2—Sn1—O2—C9	-56.45 (10)	O3-C16-C17-C22	-150.91 (13)
Cl1—Sn1—O2—C9	-150.00 (10)	C23—C16—C17—C22	30.7 (2)
O4—Sn1—O3—C16	-29.25 (10)	O3—C16—C17—C18	30.91 (17)
O2—Sn1—O3—C16	158.17 (11)	C23-C16-C17-C18	-147.44 (13)
O1—Sn1—O3—C16	-115.51 (10)	C22—C17—C18—C19	-1.2 (2)
Cl1—Sn1—O3—C16	65.37 (10)	C16—C17—C18—C19	177.04 (13)
O2—Sn1—O4—C24	76.8 (2)	C17—C18—C19—C20	1.1 (2)
O3—Sn1—O4—C24	29.95 (11)	C18—C19—C20—C21	-0.1 (2)
O1—Sn1—O4—C24	117.95 (11)	C19—C20—C21—C22	-0.8 (2)
Cl2—Sn1—O4—C24	-152.63 (11)	C18—C17—C22—C21	0.3 (2)

50.02(11)	C1(C17 C22 C21	177.9((12))
-59.02 (11)	016-017-022-021	-1//.86(13)
0.5 (2)	C20—C21—C22—C17	0.7 (2)
-179.98 (13)	O3—C16—C23—C24	2.7 (2)
-1.3 (2)	C17—C16—C23—C24	-179.11 (13)
0.7 (2)	Sn1—O4—C24—C23	-20.39 (19)
0.7 (2)	Sn1—O4—C24—C25	158.82 (9)
-1.6 (2)	C16—C23—C24—O4	-2.7 (2)
1.0 (2)	C16—C23—C24—C25	178.13 (12)
-178.56 (13)	O4—C24—C25—C26	-6.43 (18)
22.71 (18)	C23—C24—C25—C26	172.79 (13)
-158.92 (8)	O4—C24—C25—C30	175.33 (12)
153.74 (12)	C23—C24—C25—C30	-5.4 (2)
-25.77 (18)	C30—C25—C26—C27	1.2 (2)
-27.79 (19)	C24—C25—C26—C27	-177.09 (13)
152.70 (13)	C25—C26—C27—C28	0.3 (2)
3.1 (2)	C26—C27—C28—C29	-1.4 (2)
-175.23 (13)	C27—C28—C29—C30	0.9 (2)
-21.43 (18)	C28—C29—C30—C25	0.6 (2)
158.76 (9)	C26—C25—C30—C29	-1.7 (2)
-4.1 (2)	C24—C25—C30—C29	176.55 (13)
175.70 (13)	C36—C31—C32—C33	0.0
-169.73 (13)	C37—C31—C32—C33	-174.4 (4)
10.4 (2)	C31—C32—C33—C34	0.0
6.79 (18)	C32—C33—C34—C35	0.0
-173.03 (13)	C33—C34—C35—C36	0.0
-1.8 (2)	C34—C35—C36—C31	0.0
174.76 (14)	C32—C31—C36—C35	0.0
1.7 (2)	C37—C31—C36—C35	174.2 (4)
	$\begin{array}{c} -59.02 \ (11) \\ 0.5 \ (2) \\ -179.98 \ (13) \\ -1.3 \ (2) \\ 0.7 \ (2) \\ 0.7 \ (2) \\ 0.7 \ (2) \\ -1.6 \ (2) \\ 1.0 \ (2) \\ -178.56 \ (13) \\ 22.71 \ (18) \\ -178.56 \ (13) \\ 22.71 \ (18) \\ -158.92 \ (8) \\ 153.74 \ (12) \\ -25.77 \ (18) \\ -27.79 \ (19) \\ 152.70 \ (13) \\ 3.1 \ (2) \\ -175.23 \ (13) \\ -21.43 \ (18) \\ 158.76 \ (9) \\ -4.1 \ (2) \\ 175.70 \ (13) \\ -169.73 \ (13) \\ 10.4 \ (2) \\ 6.79 \ (18) \\ -173.03 \ (13) \\ -1.8 \ (2) \\ 174.76 \ (14) \\ 1.7 \ (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Fig. 1